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The dynamics of a discrete-time neural network model are investigated. First, a 
numerical survey of network power spectra is reported for networks of varying 
size with random weight matrices and initial states. The steepness of the logistic 
function and a symmetry measure of the weight matrix are taken as control 
parameters. Summary statistics are presented to give gross measures of the 
model's temporal activity in parameter space. Second, a detailed study of the 
dynamics of a particular network is described. Complex dynamical behavior is 
observed, including Hopf bifurcations, the Ruelle-Takens Newhouse route to 
chaos (showing mode-locking at rational winding numbers and the destruction 
of an invariant torus), and the period-doubling route to chaos. 

KEY WORDS: Neural networks; dynamics; chaos; routes to chaos; nonlinear 
systems. 

1. I N T R O D U C T I O N  

Research into neural  ne twork  models  has general ly  been di rec ted  t oward  
models  tha t  per form tasks such as associat ive m e m o r y  and  pa t t e rn  
classif icat ion th rough  the use of fixed po in t  a t t rac tors .  (~'2) Al though  m a n y  
powerful  a lgor i thms  for cus tomiz ing  the fixed poin ts  of stable ne tworks  
have been deve loped  and  the current  effort in unde r s t and ing  and explo i t ing  
c o m p u t a t i o n  with fixed po in ts  is exciting, it is a p p a r e n t  that  c o m p u t a t i o n  
with non-f ixed-poin t  a t t r ac to r s  has great  po ten t ia l  with regard  to t empora l  
app l ica t ions  such as associat ive  memory ,  speech recogni t ion,  and  m o t o r  
control ,  Complex  dynamica l  behav io r  in the b ra in  has recent ly been obser-  
ved and  discussed (s 5) and  it has been suggested tha t  chaot ic  dynamics  (6) 
may  provide  a posi t ive "don ' t  know"  state in associat ive memory .  (5,7's) 

Recently,  several  researchers  have repor ted  chaot ic  dynamics  in neural  
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network models from theoretical considerations, (%12) from computer 
simulation,(13) and from electronic implementation.(14) Sompolinsky 
etal. (m studied a continuous-time system with random weight matrices 
and demonstrated that as N ~  oo the dynamics will be chaotic, provided 
there is no zero fixed point. Kiirten and Clark (13) studied a continuous-time 
system numerically, with random weight matrices and limited fan-in to 
each node. They observed chaotic behavior in certain systems with greater 
than 25 nodes. Marcus and Westervelt (14) studied analog electronic 
networks with time delay: they observed period doubling to chaos in 
an asymmetric three-node network, using the time delay as a control 
parameter. Early work in neural network modeling was concerned with 
oscillation and system timing: e.g., Sloane ~ investigated a class of neural 
network models with binary neurons that executed limit cycles with lengths 
increasing exponentially with the size of the network. 

Here a discrete-time neural network model is investigated, consisting 
of N fully connected nodes, with the dynamical law 

y~(t+ 1 ) = f  Q~I  rw~jyj(t)), 

1 
f (x )  = 

l + e  

i = 1 , 2  ..... N 

(1) 

where y~(t) is the output of node i at time t and wij is an N x  N weight 
matrix; f is the node transfer function, with nonlinearity r. An initial 
random weight matrix w~ was randomly generated, so as to provide an 
RMS activation of 1.0 for each node's input by initializing each element to 
lie between -T-3/,,~. This matrix was then decomposed into symmetric Sij 
and antisymmetric A~ components 

t t S o = w~j + wj~ (2a) 

t ! A~ = wij-  wji (2b) 

and the weight matrix used in (1) was generated using a symmetry 
parameter e: 

w U = aSo + c~A 

c~ -I- cr = 1, ~ = ~/cr 
(3) 

Two control parameters were used: r, which describes the nonlinearity 
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(slope of the transfer function f ) ,  and a weight matrix symmetry parameter 
a, which may be obtained from ~ as 

1 __g2 

a = 1 + e ~ (4) 

Hence a =  -1 .0  corresponds to an antisymmetric weight matrix, a =  1.0 
corresponds to a symmetric weight matrix, and a = 0.0 corresponds to a 
random (uncorrelated) weight matrix. 

Two investigations have been performed. First an attempt was made 
to start cataloging the richness of dynamics offered by this neural network 
model by varying the parameters a and r with networks with 2-25 nodes. 
This survey was performed by computing power spectra for networks with 
randomly selected weight matrices and initial states. From the power 
spectra that were collected a set of summary statistics was computed to 
give gross measures of the temporal activity of this class of neural network 
model. The second investigation was a detailed study and characterization 
of the dynamics of a particular network. 

2. A SURVEY OF NETWORK POWER SPECTRA 

In an attempt to catalog systematically the dynamics accessible to this 
neural network model, power spectra of nodes in representative networks 
(2-25 nodes) were numerically computed. For each network of size N 
nodes, 10 randomly chosen initial weight matrices were chosen. The 
parameters a and r were varied, and each resultant system was run with 10 
random initial states. 

2.1. Computer Simulations 

For a given network, the power spectrum of each node i was 
numerically computed (after 75 iterations to run out transients 2) using a 
1024-point fast Fourier transform (FFT) ( T =  1024), giving a maximum 
detectable period of 512, 

Pi(k) = -~ ~o y~(t) exp k=O,  1,..., T 

2 Transients lasting for considerably more than 75 iterations may be observed in certain 
networks (see Section 3). 
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The peaks of the FFT were interpreted as activity at specific periods T(K) 
or frequencies co(k), 

2~k T 
c o ( k ) -  r ' k = 0 , 1 , . . . , ~  (6a) 

2~ T T 
T(k) ~o(k) k '  k = O, 1,..., ~- (65) 

The raw FFT data were then summarized into two numbers per node: 

1. pP,i mean (over frequency) power 

2 r/2 
#P = ~ k~= ~ P~(k) (7) 

2. Si, "entropy" measure of power (over frequency) 

T/2 
S, = - ~ P;(k)log P;(k) (8) 

k=l 

where P'(k) is the normalized power spectrum. 

These statistics were then averaged over all the nodes in the network 
to give two mean values tip and S, summarizing the dynamics of a par- 
ticular network. The mean power measure gives an indication of the 
amplitudes of oscillations present in the network. This will clearly be large 
valued in situations in which the network is oscillating between saturated 
parts of the nodal transfer function, i.e., at large values of r. The entropy 
measure gives an indication of how broad the power spectrum is: a spec- 
trum with a single peak will have S = 0, whereas larger values of S indicate 
that the spectrum has peaks at many different frequencies, indicating a 
complex periodic oscillation (with many harmonics) or a chaotic oscilla- 
tion (which is characterized by a broadband power spectrum). 

One hundred simulations were performed for each value of the (r, a) 
parameter pair, obtained by taking 10 random weight matrices and using 
10 random initial states for each weight matrix. The means and standard 
deviations of ti e and S were computed over these 100 simulations, giving 
four numbers to characterize the dynamics of an N-node network at a 
given (r, a) value. These simulations were performed using networks of 
various sizes (2~<N~25) and the results are shown graphically for a 
network of size N = 8 (Fig. 1). Figure 2 shows just the entropy measures for 
a network of size N-- 15. 
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Fig. 1. Summary statistics from power spectra taken for networks with N=8.  Each box 
represents 100 simulations at a given (r, a) value: 10 initial random weight matrices each run 
with 10 random initial states. The upper circles in each box represent the entropy S and the 
lower diamonds represent the overall power /]e. The filled-in shapes represent means, the 
surrounding outlines standard deviations (statistics over simulations). 

2.2. Discussion 

The (r, a) phase space of neural network temporal activity may be 
qualitatively divided into regions. At low values of r, the transfer function 
is virtually linear and the weight matrix will be of low magnitude, hence 
the eigenvalues will usually fall inside the unit circle and the network will 
display fixed-point behavior. When r is large, the transfer function is 
close to a step function; when the network is symmetric (a = 1.0) this is 
the Hopfield case with parallel update, and it may be demonstrated 
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Fig. 2. 
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Mean and standard deviations (over simulations) of average entropy ~ for networks 
with N = 15. 

analytically that the system will display fixed-point or limit-cycle period-2 
dynamics(16); when the network is antisymmetric ( a -  -1.0),  then it may 
be demonstrated that the system will exhibit limit-cycle period-4 
dynamics. (17) 

Away from these extremes, more complex dynamics with longer tem- 
poral correlations may be observed. In Fig. 2 these areas are indicated by 
the large values of the mean and standard deviation of the entropy. For  
networks of all sizes a region of higher activity may be observed, at 
approximately 4 ~< r ~< 32 (i.e., at values of r in which the transfer function 
is neither close to linear nor close to a step function) and at approximately 
-0 . 8  ~< a <~ 0.0, i.e., random networks or networks with a greater antisym- 
metric component. When long-term temporal activity first occurs in the 
network (with respect to varying r), large entropy values are observed with 
corresponding extremely low overall power values. This may be interpreted 
as a bifurcation away from a fixed point to a very small-amplitude (quasi-) 
periodic oscillation. This oscillation increases in power as either a becomes 
more negative or r increases. Additionally, an "island of activity" may be 
observed for positive values of a and low values of r. These oscillations are 
generally at low power, so a possible explanation is that they are an artifact 
caused by numerical noise arising from the accuracy of the floating point 
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Fig. 3. Plot of maximum (over a and r) mean (over simulations) entropy (max{S)) with 
respect to N. The maximum possible value for max~o e) is log(t/2)= log(512)= 6.23. 

processor. 3 However, some of the activity occurs at appreciable power 
levels, so it appears likely that there is some genuine long-time correlated 
activity occurring in these islands of activity. 

The general portrait  of network dynamics with respect to (r, a) 
appears to be qualitatively independent of N, the number of nodes in the 
network ( N > 3 ) .  However, the dynamics becomes more complex as N 
increases: this can be seen by observing the increase of the maximum (over 
a and r) mean (over simulations) entropy, m a x { S ) ,  with increasing N 
(Fig. 3). As would be expected, very small networks ( N = 2 ,  3) do not 
display complex dynamical behavior in any region of parameter  space. 

3 The simulations in this section were performed using 32-bit floating-point arithmetic. In the 
next section the simulations were performed using 64-bit floating-point arithmetic. 
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3. DYNAMICS OF A SPECIFIC NETWORK 

The survey of network power spectra gave some general indications of 
the kind of dynamics accessible to the neural network model, with respect 
to the number of nodes in the network, the symmetry of the weight matrix, 
and the nonlinearity of the transfer function. However, this gives no specific 
information about the dynamics exhibited by individual N-node networks 
with respect to r and a. To illustrate the dynamics that these systems 
exhibit, we numerically simulated an eight-node network with a particular 
random weight matrix and initial state. First the effect of varying r was 
investigated while a was held constant, then r was held constant and a 
varied. 

3.1. Random Weight Matrix ( a = 0 )  

When a = 0 the weight matrix had equal symmetric and antisymmetric 
parts, so there was no correlation between the elements. The network 
under investigation (N= 8) was first investigated by varying r at this value 
o f  a. 

The dynamics may be viewed by constructing bifurcation diagrams for 

- ' x  

f 

/ 
/ 

. /  

Hods 3 

Fig. 4. Bifurcation diagram for one node of an eight-node network (a = 0.0) with respect to 
varying r (0.0~<r<31.0). One column of the diagram represents 10,000 iterations of the 
network (after 10,000 iterations to run out transients) at a particular value of r. The y axis 
represents the output of a particular node of the network. 
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each node showing the output of that node versus r, as r increases in small 
steps. Bifurcation diagrams were constructed by running the system for 
20,000 iterations and recording the last 10,000 states of the network (which 
were presumed to be on the attractor) and plotting these on a bifurcation 
diagram. 

Figure 4 shows a bifurcation diagram for one node of the network for 
0.0 ~< r < 31.0, with r increasing in steps of 0.05. With small values of r we 
have a close to linear regime with low weight values and hence the 
dynamics evolves to a fixed point. At r = 5.282 a Hopf  bifurcation occurs 
with the system moving from fixed-point to oscillatory behavior. As expec- 
ted, the regime of r values just prior to this bifurcation is marked by very 
long-lived transients (up to 10,000 iterations). The network continues to 
display complex behavior until r > 20, when the attractor becomes a limit 
cycle of period 4, with activity on all nodes moving to the saturated regions 
of the transfer function (which becomes close to a step function). 

Figure5 shows the region 5 . 0 < r < 8 . 1  in greater detail; these 
dynamics may also be examined via the power spectrum of one node of the 
network (Fig. 6). The system bifurcates from a fixed point to one frequency 
oscillatory behavior at r = 5.2822, indicated by a single peak in the power 
spectrum; a second bifurcation occurs at r = 5.2840 when a second incom- 

11 

f-J 

0t.08 

Hods 3 

Fig. 5. Bifurcation diagram for one node of an eight-node network (a = 0.0) with respect to 
varying r (5.0 ~< r < 8.1). The regions of mode locking at winding numbers of 3/11, 5/18, and 
2/7 may be observed. 
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mensurate frequency emerges (Fig. 6). However, if a section of the attractor 
is plotted, a one-dimensional circle map results (Fig. 7a) with a corre- 
spondingly linear "0-map" (Fig. 7b). 

The orbit in the plane is restricted to a one-dimensional circle, which 
may be parametrized in terms of the angles 0, of the points on the circle 
(mod 1 in a circle of 27z) with respect to the centroid of the points, plotting 
0t+l vs. 0t (Fig. 7b). This is approximately a straight line, indicating that 
the system is rotating in phase space with a constant angular velocity. 

The dynamics of this system may be characterized by the winding 
number 
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Fig. 6. Power  spec t rum of one node  of an  e ight -node  ne twork  (a = 0.0) at  r = 6.0, showing  

two-frequency quas iper iod ic  mot ion ,  wi th  several  ha rmonics  (t~ = 3.796, t 2 = 2.110). 
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(a) 

g(? 

g(3) 

(b) 

Fig. 7. (a) Attractor section Y3 vs. Y7 and (b) corresponding 0-map, when r=6.00, a=0.0. 
Although there are two incommensurate frequencies, the 0-map still shows one-dimensional 
(linear) characteristics. 

The winding number measures the average shift of the angle 0 per iteration; 
0 is not taken mod 1 in this expression. The value of the winding number  
at a given r value may also be obtained from the power spectrum: it 
corresponds to the dominant  peak. The value of the winding number may 
be plotted against r (Fig. 8). The plot shows the characteristic "devil's 
staircase," a self-similar structure. Each step of the staircase corresponds to 
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Fig. 8. Plot of winding number W against r at a = 0.0. The mode-locking phenomenon is 
apparent in the self-similar devil's staircase structure--note that 5/18 is the Farey daughter of 
3/11 and 2/7. The breakup of the devil's staircase indicates a transition to chaos�9 

a rational winding number at which the system is mode locked; these 
rational numbers correspond to those generated by the Farey tree of 
rational numbers. These dynamics are similar to those of the circle 
map(18,19): 

0.+ 1 = 0. + ~ - K sin(2~0n) mod 1 (10) 
ZT~ 

When r = 6.9 another bifurcation occurs and a third frequency may be 
observed in the power spectrum (Fig. 9) along with numerous harmonics 
and linear combinations; some broadband noise is also visible in the power 
spectrum, indicating a transition to chaos. The attractor section (Fig. 10a) 
shows the circle starting to backfold and the corresponding 0-map 
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Power  spec t rum of one node  of the ne twork  at  r = 7.07 and  a = 0.0. A third incom- 

mensura te  f requency has  been in t roduced.  

(Fig. 10b) shows a cubic point of inflection. This is characteristic of the 
Ruelle-Takens-Newhouse route to chaos32~ As r increases, more back- 
folding occurs and the transition to chaos is complete, which may also be 
observed in the W vs. r plot (Fig. 8): the devil's staircase breaks up when 
the system becomes chaotic. 

A section of the attractor may be plotted in two dimensions (Fig. 1l): 
however, at least three dimensions are needed in order to illustrate the full 
structure and complexity of this attractor. At r =  10.69 the correlation 
dimension (D2) was computed using the Grassberger-Procaccia ~21~ method 
with 32,000 points assumed to be on the attractor, having run the system 
for 10,000 iterations to discard transients. A value of D2=2 .19+0 .01  was 
computed. 

Figure 12 shows a bifurcation diagram in the range 11.0~<r~< 14.1. As 
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Fig. 10. (a) Attractor section Y3 vs. Y7 and (b) corresponding 0-map, when r = 7.07, a = 0.0. 
The introduction of a third frequency causes the circle to begin to break up (a) and a cubic 
point of inflection appears in the 0-map (b), marking the appearance of a transition to chaos. 
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Fig. 11. Section of the chaotic at t ractor  at r = 10.69, a = 0.0. 

r is increased to a round  12.0, the dynamics  displays period doubl ing to 
chaos, which may  be observed in the bifurcation diagram; the period 
doubling may also be tracked using power spectra, with the corresponding 
new low-frequency peak appearing at each period doubling. This is a classi- 
cal route to chaos (22) characterized by Feigenbaum's  constant  5, 

rn = r~o - const �9 6 -n, n >> 1 (11) 

Fig. 12. Bifurcation diagram for one node of an eight-node network (a = 0.0) with respect to 
varying r (11.0 ~< r < 14.1). Period doubling to chaos may  be observed around r = 12. 
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Bifurcation diagram for one node of an eight-node network [r = 6.0) with respect to 
varying a ( - 0 . 8  ~<a<0.41).  
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where r~ is the accumulation point of the period doublings and r, is the 
parameter value of the nth period doubling. Within the floating-point 
accuracy of the computer on which the system was simulated, we were able 
to determine r values for the first six period doublings, from which a value 
for 5 was extracted, 5 = 4.67_+ 0.04, which is in good agreement with the 
accepted value of 6 =4 .6692 .... This route to chaos indicates that this 
system may be reduced to a one-dimensional system of quadratic form in 
this region of parameter space. A section of the resultant attractor is shown 
for r =  12.18 (Fig. 13). D2 was again computed using the Grassberger 
Procaccia m~) method. A value of D 2 = 2.21 _+ 0.02 was obtained at r = 12.18. 

Fig. 15. 
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Plot of winding number W against a at r = 6 .0 .  Note that the devil's staircase is not 
monotonically increasing. 
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3.2. Symmetry Dependence 

Simulations were performed on this eight-node system in which r was 
held constant and a was varied. A bifurcation diagram in the region 
-0 . 8  ~< a < 0.44 ( r =  6.0) is shown in Fig. 14. A Hopf bifurcation occurs at 
a = 0.0153 and single-frequency quasiperiodic behavior ensues. The system 
displays mode locking at rational winding numbers and a plot of W vs. a 
may be made (Fig. 15). After mode locking at W =  1/4 a second bifurcation 
occurs at a = 0.004, introducing a second incommensurate frequency into 
the system. The system abruptly bifurcates back to fixed-point behavior at 
a = -0 .06 (see the expanded bifurcation diagram, Fig. 16), bifurcating back 
to one-frequency behavior at a = 0.675; at a = 0.685 the system bifurcates to 
two-frequency behavior and the system again undergoes a transition to 
chaos via the Ruelle Takens-Newhouse route, with an abrupt transition 
occurring at a =  -0.088. A section of the resultant attractor (Y3 vs. Yl) 
is displayed (Fig. 17). Using the Grassberger-Procaccia (21) method, the 
correlation dimension ( D j  was computed for the attractor (32,000 points 
were computed after 10,000 iterations to run out transients) giving a value 
of O 2 = 1.54 + 0.01 at a = -0.088. 

The dynamics of the system also appears to be more complicated than 
when varying r and holding a constant, with multiple coexisting attractors, 

Fig. 16. 

Node 3 

Bifurcation diagram for one node of an eight-node network (r = 6.0) with respect to 
v a r y i n g a  ( - 0 . 1 2 ~ < a <  0.059). 
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A t t r a c t o r  sec t ion  Y3 vs. Yl for  r = 6.0, a = - 0 . 0 8 8 .  The  r e su l t an t  c h a o t i c  a t t r a c t o r  has  

a very  th in  s t ruc tu re ,  c o r r e s p o n d i n g  to its low d i m e n s i o n a l i t y  (D 2 = 1.54). 

period doubling cascades, and torus destructions (see Fig. 15). Further 
investigation is warranted in this area. (The dynamics in this region of 
parameter space is similar to that observed by Parlitz and Lauterborn (19) 
in a study of a driven van der Pol oscillator.) 

The "circle map" behavior exhibited here is also shown by systems 
such as the one defined in (10). This system also has two control 
parameters (K, 12), which, when plotted against each other, give a phase 
diagram showing periodic and nonperiodic behavior. The areas of periodic 
behavior appear on this phase diagram as Arnol'd tongues. We conjecture 
that our system is similar to (10) and that both K and 12 are nonlinear 
functions of (r, a). 

4. D I S C U S S I O N  

A most important problem in engineering neural networks is that of 
customizing networks to produce attractors to perform a desired computa- 
tion: this is the temporal training problem. Several algorithms have been 
proposed for this task, (2329) but there is as yet no general algorithm to 
design a network to emulate a given dynamical process. Baird (3~ proposes 
an algorithm that inverts the problem by designing a set of attractors and 
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their basins of attraction by specifying desired eigenvectors. Rosenblatt (31) 
suggested a perceptron with sequential memory: this extension to percep- 
tron theory utilized a set of feedback units with system timing properties. 
Rosenblatt's specification for these units is that they should display non- 
repetitive deterministic dynamics, i.e., chaotic dynamics. A related problem 
is that of using a recurrent neural network to act as a temporal associative 
memory. Neural networks displaying chaotic dynamics may be important 
in this case (7"8) by allowing for a "knowing that you don't know situation" 
being signaled by being on a strange attractor: this would allow a broad 
search of state space, as well as serving as priming for a novel stimulus. 
Gardner et ai.(32) have analytically calculated the storage capacity (where a 
stored pattern corresponds to a fixed point) of a fully-connected neural 
network model (utilizing a step transfer function) with respect to the sym- 
metry (a) and a stability parameter (~c) corresponding to the size of the 
basins of attraction around fixed points. The theoretical curve that they 
derive gives the region of maximal storage to be when the weight matrix 
has a larger symmetric component (a=0.3 when ~c=0, a--, 1.0 when 
~c ~ o0). To the extent that the maximal r values surveyed (Section 2) are 
good approximations to ~ ,  then we may locate the region of maximal 
storage in Figs. 1 and 2 as areas of high power and low spectrum entropy. 

The phenomenon of intermittency (6) would also be useful for 
associative memory. In this route to chaos, a fixed point bifurcates (typi- 
cally via a tangent bifurcation) and the resultant attractor has long, regular 
phases together with shorter bursts of irregular motion. This could clearly 
be useful in a time-dependent associative memory, as it would provide a 
mechanism for moving from a memory some time after recall without any 
external stimulus: a self-priming mechanism. 

Chaotic attractors act as information generators in some directions 
and information compressors in others. By partitioning the phase space 
and labeling with symbols of an alphabet, it is feasible that a dynamical 
system featuring coexisiting chaotic attractors could be used as a method 
of generating strings of symbols. It may be hypothesized that certain attrac- 
tors, partitioned in an appropriate way, may approximate to an nth-order 
Markov process. Nicolis e t a l .  (33) show how the R6ssler attractor may 
approximate to a fifth-order Markov chain. Such considerations may be 
important in applying dynamical systems methods to high-level cognitive 
and linguistic problems. Crutchfield and Young (34) present a technique that 
reconstructs a minimal set of equations of motion via a variable-order 
Markov model. 

The observed regions of mode locking are extremely interesting. 
Systems displaying mode locking are generally multifrequency systems; e.g., 
they may have a natural frequency and a driving frequency. There is no 
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obvious mapping from the control parameters used here (r and a) to a pair 
of frequencies. It may be hypothesized that what is being observed is the 
interaction of two (or more) subnets that nonlinearly combine to produce 
the overall behavior. The frequencies of these subnets may be nonlinear 
functions of (r, a). This could be used for some kind of local system timing, 
should it be required in a particular network. The phenomenon of locking 
into rational winding numbers may also have implications for fault 
tolerance and learning: when a system moves into an appropriate region of 
parameter space, it may lock into a desired rational winding number. 

In the region near the Hopf bifurcation from fixed-point behavior to 
(quasi-) periodic behavior very long-lived transients are observed. Kantz 
and Grassberger/35~ suggest that chaotic transients are more robust against 
noise than the true attractors and they are in fact "more typical" of the 
dynamical system. This may be important for schemes in which learning 
dynamics is run concurrently with the network dynamics. A system could 
exist on a robust, long-lived transient according to the network dynamics, 
while the learning dynamics makes changes to the parameters of the 
dynamical System (and hence the less robust true attractor). Exploitation 
of these properties would allow the system to explore parameter space to 
find an attractor suitable for the computation at hand, while existing on a 
robust transient. 

Studies of continuous-time counterparts to discrete mappings suggest 
that continuous systems tend to be more stable. (36~ Typical of the 
continuous models is the one studied by Pineda(2): 

dt - T i + f  wuyj+Ii (12) 

where f is the transfer function and Ii represent external biases. A dis- 
cretized version of this system is 

y,(t + At)= ( 1 -  At) yi(t) + At f ( ~  w~ yj(t) + Ii) (13) 

When At= 1 and there is no external bias, then we have (1); Pineda ~2) has 
suggested that discretizing with At = 0.9 imparts considerably stability into 
the system, compared with (1). Ottaway et al. (37~ report that after numeri- 
cal simulation of (12) with random initial weight matrices, all networks 
with 50 or less nodes possessed stable fixed points, and only 2 out of 500 
100-node networks, with weights uniformly randomly initialized in the 
region ___ 1, did not display fixed-point behavior. These results are similar 
to the discrete case, as these initialization conditions locate the networks in 
the low-r (r < 3.3) region of Fig. 2; the value of At in the discretization is 
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not reported. However, complex dynamical activity has been demonstrated 
in (12): Ktirten and Clark (13) have reported chaotic behavior in such 
systems, with greater than 25 nodes, and a limited fan-in of eight weights 
inputing to each node; Pearlmutter/29~ has trained small networks governed 
by dynamical law (12) to display complex limit cycles. Immediate future 
work will focus on comparing discrete dynamical systems with their con- 
tinuous counterparts. 

Finally, it must be emphasized that the design of general dynamical 
training algorithms is not a trivial task. However, the techniques used to 
study random networks in this work may be valuable tools with which to 
analyze temporal neural network training algorithms. 
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